1. [3 балла] Углы α и β удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{5}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{4}{5}.$$

Найдите все возможные значения $\operatorname{tg} \alpha$, если известно, что он определён и что этих значений не меньше трёх.

Otbet: $0, -2, -\frac{1}{2}$.

Решение. Преобразуя в левой части второго равенства сумму синусов в произведение, получаем $\sin(2\alpha + 2\beta)\cos 2\beta = -\frac{2}{5}$. Подставляем в это соотношение значение синуса из первого равенства:

$$-\frac{1}{\sqrt{5}}\cos 2\beta = -\frac{2}{5} \iff \cos 2\beta = \frac{2}{\sqrt{5}} \iff \begin{bmatrix} \sin 2\beta = \frac{1}{\sqrt{5}}, \\ \sin 2\beta = -\frac{1}{\sqrt{5}}. \end{bmatrix}$$

Отсюда следует, что исходные равенства эквивалентны совокупности двух систем уравнений:

$$\begin{cases} \sin(2\alpha+2\beta)=-\frac{1}{\sqrt{5}},\\ \cos 2\beta=\frac{2}{\sqrt{5}},\\ \sin 2\beta=\frac{1}{\sqrt{5}} \end{cases} \quad \text{if} \quad \begin{cases} \sin(2\alpha+2\beta)=-\frac{1}{\sqrt{5}},\\ \cos 2\beta=\frac{2}{\sqrt{5}},\\ \sin 2\beta=-\frac{1}{\sqrt{5}}. \end{cases}$$

Из первой системы получаем

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{5}}, \\ \cos 2\beta = \frac{2}{\sqrt{5}}, \\ \sin 2\beta = \frac{1}{\sqrt{5}} \end{cases} \Rightarrow \frac{2}{\sqrt{5}} \sin 2\alpha + \frac{1}{\sqrt{5}} \cos 2\alpha = -\frac{1}{\sqrt{5}}.$$

Далее имеем

$$4\sin\alpha\cos\alpha + \left(\cos^2\alpha - \sin^2\alpha\right) = -\left(\cos^2\alpha + \sin^2\alpha\right) \Leftrightarrow 2\cos\alpha(\cos\alpha + 2\sin\alpha) = 0 \Leftrightarrow \\ \Leftrightarrow \begin{bmatrix} \cos\alpha = 0, \\ \cos\alpha = 2\sin\alpha. \end{bmatrix}$$

В первом случае $\operatorname{tg} \alpha$ не существует, а во втором случае $\operatorname{tg} \alpha = -\frac{1}{2}$.

Аналогично рассматриваем вторую систему:

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{5}}, \\ \cos 2\beta = \frac{2}{\sqrt{5}}, \\ \sin 2\beta = -\frac{1}{\sqrt{5}} \end{cases} \Rightarrow \frac{2}{\sqrt{5}} \sin 2\alpha - \frac{1}{\sqrt{5}} \cos 2\alpha = -\frac{1}{\sqrt{5}} \Leftrightarrow \\ \Leftrightarrow 4 \sin \alpha \cos \alpha - \left(\cos^2 \alpha - \sin^2 \alpha\right) = -\left(\cos^2 \alpha + \sin^2 \alpha\right) \Leftrightarrow 2 \sin \alpha (2 \cos \alpha + \sin \alpha) = 0 \Leftrightarrow \\ \Leftrightarrow \left[\sin \alpha = 0, \\ 2 \cos \alpha = -\sin \alpha. \right] \end{cases}$$

Отсюда $\operatorname{tg} \alpha = 0$ или $\operatorname{tg} \alpha = -2$.

Итак, возможные значения $\operatorname{tg} \alpha$ – это 0, -2 и $-\frac{1}{2}$.

$$\begin{cases} x - 2y = \sqrt{xy - x - 2y + 2}, \\ x^2 + 9y^2 - 4x - 18y = 12. \end{cases}$$

Ответ:
$$(6;2), \left(2-\sqrt{\frac{5}{2}};1-\sqrt{\frac{5}{2}}\right).$$

Решение. Первое уравнение при условии $x-2y\geqslant 0$ равносильно уравнению $(x-2y)^2=xy-x-2y+2$, откуда $x^2+(1-5y)x+(4y^2+2y-2)=0$. Решая это уравнение как квадратное относительно переменной x, имеем $D=(1-5y)^2-4(4y^2+2y-2)=(3y-3)^2; x=4y-2$ или x=y+1. Подставляем во второе уравнение исходной системы.

Если x=4y-2, то $25y^2-50y=0$, и получаем две пары y=0, x=-2 и y=2, x=6. Если x=y+1, то $10y^2-20y-15=0$, откуда также имеем две пары $y=1+\sqrt{\frac{5}{2}},$ $x=2+\sqrt{\frac{5}{2}}$ и $y=1-\sqrt{\frac{5}{2}},$ $x=2-\sqrt{\frac{5}{2}}.$

Из четырёх найденных пар чисел неравенству $x\geqslant 2y$ удовлетворяют только две из них: (6;2), $\left(2-\sqrt{\frac{5}{2}};1-\sqrt{\frac{5}{2}}\right)$.

3. [5 баллов] Решите неравенство

$$5^{\log_{12}(x^2+18x)} + x^2 \geqslant |x^2 + 18x|^{\log_{12} 13} - 18x.$$

Ответ: $[-24; -18) \cup (0; 6].$

Решение. Заметим, что $x^2 + 18x > 0$. Следовательно, $|x^2 + 18x| = x^2 + 18x$. Область допустимых значений – это $x \in (-\infty; -18) \cup (0; +\infty)$, а неравенство эквивалентно следующим:

$$5^{\log_{12}(x^2+18x)} + (x^2+18x) \geqslant (x^2+18x)^{\log_{12}13} \Leftrightarrow \\ \Leftrightarrow 5^{\log_{12}(x^2+18x)} + 12^{\log_{12}(x^2+18x)} \geqslant 13^{\log_{12}(x^2+18x)} \Leftrightarrow \left(\frac{5}{13}\right)^{\log_{12}(x^2+18x)} + \left(\frac{12}{13}\right)^{\log_{12}(x^2+18x)} \geqslant 1.$$

Рассмотрим неравенство $\left(\frac{5}{13}\right)^y + \left(\frac{12}{13}\right)^y \geqslant 1$. Функция $h(y) = \left(\frac{5}{13}\right)^y + \left(\frac{12}{13}\right)^y$ — убывающая (как сумма убывающих функций). Несложно заметить, что h(2) = 1, поэтому если y > 2, то h(y) < 1, а если y < 2, то h(y) > 1. Таким образом, это неравенство даёт $y \leqslant 2$, а исходное неравенство эквивалентно неравенству $\log_{12}\left(x^2+18x\right)\leqslant 2$. Отсюда получаем $0 < x^2+18x\leqslant 144, \ x\in [-24;-18)\cup(0;6]$.

4. [5 баллов] Окружности Ω и ω касаются в точке A внутренним образом. Отрезок AB – диаметр большей окружности Ω , а хорда BC окружности Ω касается ω в точке D. Луч AD повторно пересекает Ω в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает Ω в точке F. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что CD=8, BD=17.

Ответ:
$$R = \frac{85}{6}$$
, $r = \frac{136}{15}$, $\angle AFE = 45^{\circ} + \frac{1}{2}\arccos\frac{15}{17}$, $S_{\triangle AEF} = \frac{2125}{12}$.

Решение. Обозначим $\angle ABC = \psi$, а радиусы Ω и ω через R и r соответственно. Пусть O и Q – центры окружностей Ω и ω соответственно; K – точка пересечения ω и AB, отличная от A.

Отметим, что $\angle BDQ = 90^\circ$ (касательная BD перпендикулярна радиусу DQ) и $\angle BCA = 90^\circ$ (угол вписан в окружность Ω и опирается на её диаметр). Значит, треугольники BDQ и BCA подобны (по двум углам). Отсюда $\frac{BD}{BQ} = \frac{BC}{BA}$, т.е. $\frac{17}{2R-r} = \frac{25}{2R}$, а значит, $R = \frac{25r}{16}$. По теореме о

касательной и секущей $BD^2=BK\cdot BA=(2R-2r)\cdot 2R=\left(\frac{25r}{8}-2r\right)\cdot \frac{25r}{8}=\frac{225r^2}{64}$. Следовательно, $BD=\frac{15r}{8},\ r=\frac{8\cdot BD}{15}=\frac{136}{15},\ R=\frac{25r}{16}=\frac{85}{6}$.

Далее находим углы и дуги: $\stackrel{\smile}{AC} = 2\angle ABC = 2\psi$; $\angle BQD = 90^\circ - \angle QBD = 90^\circ - \psi$; $\angle AQD = 180^\circ - \angle BQD = 90^\circ + \psi$; $\angle QAD = \frac{1}{2} \left(180^\circ - \angle AQD\right) = 45^\circ - \frac{\psi}{2}$; $\stackrel{\smile}{BE} = 2\angle BAC = 90^\circ - \psi$; $\stackrel{\smile}{CE} = 180^\circ - \stackrel{\smile}{AC} - \stackrel{\smile}{BE} = 90^\circ - \psi$. Следовательно, $\angle AFE = \frac{1}{2} \stackrel{\smile}{AE} = 45^\circ + \frac{\psi}{2}$. Угол ψ известен, так как $\cos \psi = \frac{BC}{BA} = \frac{25}{85/3} \cdot \frac{15}{17}$. Значит, $\angle AFE = 45^\circ + \frac{1}{2} \arccos \frac{15}{17}$.

Перейдём к нахождению площади. Треугольник AEF прямоугольный ($\angle EAF = 90^\circ$ как вписанный угол, опирающийся на диаметр), поэтому $FA = FE\cos\angle EFA$, $S_{\triangle AEF} = \frac{1}{2}\cdot FA\cdot FE\cdot\sin\angle AFE = \frac{1}{4}FE^2\sin(2\angle AFE) = \frac{1}{4}\cdot 4R^2\sin(90^\circ + \psi) = R^2\cos\psi = \left(\frac{85}{6}\right)^2\cdot\frac{15}{17} = \frac{2125}{12}$.

5. **[5 баллов]** Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что $1 \le x \le 24$, $1 \le y \le 24$ и f(x/y) < 0.

Ответ: 198.

Решение. Подставляя a=1 в равенство f(ab)=f(a)+f(b), получаем f(b)=f(1)+f(b), значит, f(1)=0. Если же для произвольных натуральных x,y положить $a=\frac{x}{y},b=y$, то получаем $f(x)=f\left(\frac{x}{y}\cdot y\right)=f\left(\frac{x}{y}\right)+f(y)$, откуда $f\left(\frac{x}{y}\right)=f(x)-f(y)$. Таким образом, чтобы вычислить значение функции f в произвольной положительной рациональной точке нам достаточно значения функции f для любого натурального числа.

Для простых чисел и единицы значения функции мы уже знаем. Для составных чисел значения функции могут быть найдены, если их разложить на простые множители и воспользоваться равенством f(ab) = f(a) + f(b), например, $f(15) = f(3 \cdot 5) = f(3) + f(5) = \left[\frac{3}{4}\right] + \left[\frac{5}{4}\right] = 0 + 1 = 1$. Аналогичным образом вычисляем значения функции для $n \in [1; 24]$ и записываем их в таблицу:

n	1	2	3	4	5	6	7	8	9	10	11	12
f(n)	0	0	0	0	1	0	1	0	0	1	2	0
n	13	14	15	16	17	18	19	20	21	22	23	24
f(n)	3	1	1	0	4	0	4	1	1	2	5	0

- x = y. В данном случае имеется 24 варианта.
- $x \neq y$, а f(x) = f(y) = 0. В таблице есть 11 аргументов, при которых f = 0. Выбирая пару таких аргументов, первый можно выбрать 11 способами, а второй 10 способами. Значит, количество пар такого типа равно $11 \cdot 10 = 110$.
- $x \neq y$, а f(x) = f(y) = 1. Аналогично предыдущему пункту получаем $7 \cdot 6 = 42$ пары.
- $x \neq y$, а f(x) = f(y) = 2. Здесь $2 \cdot 1 = 2$ пары.

• $x \neq y$, а f(x) = f(y) = 4. Здесь также $2 \cdot 1 = 2$ пары.

Итого, есть 24+110+42+2+2=180 пар натуральных чисел (x;y), для которых $f\left(\frac{x}{y}\right)=0$. Всего имеется $24^2=576$ пар, поэтому тех, при которых $f\left(\frac{x}{y}\right)<0$, ровно $\frac{576-180}{2}=198$.

6. [5 баллов] Найдите все пары чисел (a; b) такие, что неравенство

$$\frac{12x+11}{4x+3} \leqslant ax+b \leqslant -8x^2 - 30x - 17$$

выполнено для всех x на промежутке $\left[-\frac{11}{4}; -\frac{3}{4}\right)$.

Ответ: a = -2, $b = -\frac{1}{2}$.

Решение. Рассмотрим второе неравенство. Обозначим $h(x) = -8x^2 - 30x - 17$. График – парабола с ветвями вниз. На концах данного в условии промежутка имеем $h\left(-\frac{11}{4}\right) = 5$, $h\left(-\frac{3}{4}\right) = 1$. Так как неравенство должно выполняться на всём промежутке, то точки $M\left(-\frac{11}{4};5\right)$ и $N\left(-\frac{3}{4};1\right)$ могут располагаться на прямой y=ax+b или выше неё. Отсюда самое "высокое" расположение этой прямой (на указанном промежутке) есть прямая MN. Составляя её уравнение по двум точкам, имеем $y=-2x-\frac{1}{2}$ (назовём эту прямую ℓ).

График левой части неравенства – гипербола $g(x)=\frac{12x+11}{4x+3}$. Заметим, что она касается прямой ℓ в точке, принадлежащей промежутку $\left[-\frac{11}{4};-\frac{3}{4}\right]$. Действительно, уравнение $\frac{12x+11}{4x+3}=-2x-\frac{1}{2}$ имеет единственное решение $x=-\frac{4}{5}$, и при этом $g'(x)=-\frac{8}{(4x+3)^2},\ g'\left(-\frac{5}{4}\right)=-2$, т.е. угловой коэффициент прямой ℓ совпадает с производной функции y=g(x) в их общей точке. Несложно видеть (если построить график), что на данном промежутке прямая ℓ находится выше гиперболы. Любая прямая, расположенная "ниже" прямой ℓ пересекается с гиперболой, и потому не удовлетворяет условию.

Итак, ℓ – единственная возможная прямая, удовлетворяющая условию; следовательно, a=-2, $b=-\frac{1}{2}$.

7. [6 баллов] Дана пирамида ABCD, вершина A которой лежит на одной сфере с серединами всех её рёбер, кроме ребра AD. Известно, что AB=1, BD=2, CD=3. Найдите длину ребра BC. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Ответ:
$$BC = \sqrt{7}, R_{\min} = \sqrt{\frac{7}{3}}.$$

Решение. Пусть K, L, M, N, P — середины рёбер AB, BD, CD, AC, BC соответственно. Из теоремы о средней линии треугольника следует, что KLMN и AKPN — параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями KLM и ABC, поэтому эти параллелограммы — прямоугольники. Угол BAC — прямой; прямые AD и BC перпендикулярны, так как $AD \parallel KL$, $KL \perp LM$, $BC \parallel LM$.

Отметим в плоскости ABC точку D' такую, что $\triangle BCD = \triangle BCD'$, а точки A и D' лежат по разные стороны от прямой BC (треугольник BCD' может быть получен из треугольника BCD поворотом вокруг прямой BC). Из равенства треугольников BCD и BCD' следует, что основания их высот, опущенных на BC — это одна и та же точка (назовём её H). Плоскость DD'H перпендикулярна BC (так как $DH \perp BC$, $D'H \perp BC$), поэтому $DD' \perp BC$. Поскольку $DD' \perp BC$ и $AD \perp BC$, то плоскость ADD' перпендикулярна BC и $AD' \perp BC$.

Значит, ABCD' — четырёхугольник со взаимно перпендикулярными диагоналями (пусть X — точка их пересечения). По теореме Пифагора $AB^2 = AX^2 + BX^2$, $CD'^2 = CX^2 + D'X^2$,

$$BD'^2=BX^2+D'X^2,$$
 $AC^2=AX^2+CX^2,$ следовательно, $AB^2+CD'^2=BD'^2+AC^2,$ откуда $AC=\sqrt{1^2+3^2-2^2}=\sqrt{6}.$ Из прямоугольного треугольника ABC находим $BC=\sqrt{AB^2+AC^2}=\sqrt{7}.$

Радиус сферы, описанной около пирамиды ABCD, не меньше радиуса R окружности, описанной около грани BCD. Пирамида, для которой достигается равенство, существует. Докажем это. Рассмотрим сферу радиуса R и окружность – её сечение, проходящее через центр сферы. Впишем в эту окружность треугольник BCD и через прямую BC проведём плоскость, перпендикулярную плоскости этого треугольника. В сечении сферы указанной плоскостью получится окружность с диаметром BC, в которую можно вписать прямоугольный треугольник ABC. По теореме косинусов из треугольника BCD находим, что $\cos \angle BDC = \frac{CD^2 + BD^2 - BC^2}{2 \cdot CD \cdot BD} = \frac{9 + 4 - 7}{2 \cdot 3 \cdot 2} = \frac{1}{2}$, $\angle BDC = 60^\circ$. По теореме синусов $R = \frac{BC}{2 \sin \angle BDC} = \frac{\sqrt{7}}{2 \sin 60^\circ} = \sqrt{\frac{7}{3}}$.

1. [3 балла] Углы α и β удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{5}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{2}{5}.$$

Найдите все возможные значения $\operatorname{tg} \alpha$, если известно, что он определён и что этих значений не меньше трёх.

Ответ: $3, -1, \frac{1}{3}$.

Решение. Преобразуя в левой части второго равенства сумму синусов в произведение, получаем $\sin(2\alpha + 2\beta)\cos 2\beta = -\frac{1}{5}$. Подставляем в это соотношение значение синуса из первого равенства:

$$-\frac{1}{\sqrt{5}}\cos 2\beta = -\frac{1}{5} \iff \cos 2\beta = \frac{1}{\sqrt{5}} \iff \begin{bmatrix} \sin 2\beta = \frac{2}{\sqrt{5}}, \\ \sin 2\beta = -\frac{2}{\sqrt{5}}. \end{bmatrix}$$

Отсюда следует, что исходные равенства эквивалентны совокупности двух систем уравнений:

$$\begin{cases} \sin(2\alpha+2\beta)=-\frac{1}{\sqrt{5}},\\ \cos 2\beta=\frac{1}{\sqrt{5}},\\ \sin 2\beta=\frac{2}{\sqrt{5}} \end{cases} \qquad \text{II} \quad \begin{cases} \sin(2\alpha+2\beta)=-\frac{1}{\sqrt{5}},\\ \cos 2\beta=\frac{1}{\sqrt{5}},\\ \sin 2\beta=-\frac{2}{\sqrt{5}}. \end{cases}$$

Из первой системы получаем

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{5}}, \\ \cos 2\beta = \frac{1}{\sqrt{5}}, \\ \sin 2\beta = \frac{2}{\sqrt{5}} \end{cases} \Rightarrow \frac{1}{\sqrt{5}} \sin 2\alpha + \frac{2}{\sqrt{5}} \cos 2\alpha = -\frac{1}{\sqrt{5}}.$$

Далее имеем

$$2\sin\alpha\cos\alpha + 2\left(\cos^2\alpha - \sin^2\alpha\right) = -\left(\cos^2\alpha + \sin^2\alpha\right) \Leftrightarrow \sin^2\alpha - 2\sin\alpha\cos\alpha - 3\cos^2\alpha = 0 \Leftrightarrow \\ \Leftrightarrow \begin{bmatrix} \sin\alpha - 3\cos\alpha = 0, \\ \sin\alpha + \cos\alpha = 0. \end{bmatrix}$$

В первом случае $\operatorname{tg} \alpha = 3$, а во втором случае $\operatorname{tg} \alpha = -1$.

Аналогично рассматриваем вторую систему:

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{5}}, \\ \cos 2\beta = \frac{1}{\sqrt{5}}, \\ \sin 2\beta = -\frac{2}{\sqrt{5}} \end{cases} \Rightarrow \frac{1}{\sqrt{5}} \sin 2\alpha - \frac{2}{\sqrt{5}} \cos 2\alpha = -\frac{1}{\sqrt{5}} \Leftrightarrow \\ \Leftrightarrow 2 \sin \alpha \cos \alpha - 2 \left(\cos^2 \alpha - \sin^2 \alpha\right) = -\left(\cos^2 \alpha + \sin^2 \alpha\right) \Leftrightarrow 3 \sin^2 \alpha + 2 \sin \alpha \cos \alpha - \cos^2 \alpha = 0 \Leftrightarrow \\ \Leftrightarrow \left[3 \sin \alpha - \cos \alpha = 0, \\ \sin \alpha + \cos \alpha = 0. \right]$$

Отсюда $\operatorname{tg} \alpha = -1$ или $\operatorname{tg} \alpha = \frac{1}{3}$.

Итак, возможные значения $tg \alpha$ – это 3, -1 и $\frac{1}{3}$.

$$\begin{cases} x - 12y = \sqrt{2xy - 12y - x + 6}, \\ x^2 + 36y^2 - 12x - 36y = 45. \end{cases}$$

Ответ:
$$(15;1)$$
, $\left(6-12\sqrt{\frac{2}{5}};\frac{1}{2}-\frac{3}{\sqrt{10}}\right)$.

Решение. Первое уравнение при условии $x-12y\geqslant 0$ равносильно уравнению $(x-12y)^2=2xy-12y-x+6$, откуда $x^2+(1-26y)x+(144y^2+12y-6)=0$. Решая это уравнение как квадратное относительно переменной x, имеем $D=(1-26y)^2-4\,(144y^2+12y-6)=(10y-5)^2$; x=18y-3 или x=8y+2. Подставляем во второе уравнение исходной системы.

Если x=18y-3, то $360y^2-360y=0$, и получаем две пары y=0, x=-3 и y=1, x=15. Если x=8y+2, то $20y^2-20y-13=0$, откуда также имеем две пары $y=\frac{1}{2}+\frac{3}{\sqrt{10}},$ $x=6+12\sqrt{\frac{2}{5}}$ и $y=\frac{1}{2}-\frac{3}{\sqrt{10}},$ $x=6-12\sqrt{\frac{2}{5}}.$

Из четырёх найденных пар чисел неравенству $x\geqslant 12y$ удовлетворяют только две из них: (15; 1), $\left(6-12\sqrt{\frac{2}{5}};\frac{1}{2}-\frac{3}{\sqrt{10}}\right)$.

3. [5 баллов] Решите неравенство

$$10x + |x^2 - 10x|^{\log_3 4} \geqslant x^2 + 5^{\log_3(10x - x^2)}$$
.

Ответ: $(0;1] \cup [9;10)$.

Решение. Заметим, что $10x-x^2 > 0$. Следовательно, $|x^2 - 10x| = 10x-x^2$. Область допустимых значений – это $x \in (0; 10)$, а неравенство эквивалентно следующим:

$$(10x - x^{2}) + (10x - x^{2})^{\log_{3} 4} \geqslant 5^{\log_{3}(10x - x^{2})} \Leftrightarrow$$

$$\Leftrightarrow 3^{\log_{3}(10x - x^{2})} + 4^{\log_{3}(10x - x^{2})} \geqslant 5^{\log_{3}(10x - x^{2})} \Leftrightarrow \left(\frac{3}{5}\right)^{\log_{3}(10x - x^{2})} + \left(\frac{4}{5}\right)^{\log_{3}(10x - x^{2})} \geqslant 1.$$

Рассмотрим неравенство $\left(\frac{3}{5}\right)^y + \left(\frac{4}{5}\right)^y \geqslant 1$. Функция $h(y) = \left(\frac{3}{5}\right)^y + \left(\frac{4}{5}\right)^y$ — убывающая (как сумма убывающих функций). Несложно заметить, что h(2) = 1, поэтому если y > 2, то h(y) < 1, а если y < 2, то h(y) > 1. Таким образом, это неравенство даёт $y \leqslant 2$, а исходное неравенство эквивалентно неравенству $\log_3\left(10x - x^2\right) \leqslant 2$. Отсюда получаем $0 < 10x - x^2 \leqslant 9$, $x \in (0;1] \cup [9;10)$.

4. [5 баллов] Окружности Ω и ω касаются в точке A внутренним образом. Отрезок AB – диаметр большей окружности Ω , а хорда BC окружности Ω касается ω в точке D. Луч AD повторно пересекает Ω в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает Ω в точке F. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что $CD = \frac{15}{2}$, $BD = \frac{17}{2}$.

Ответ: R = 17, $r = \frac{255}{16}$, $\angle AFE = 45^{\circ} + \frac{1}{2}\arccos\frac{8}{17}$, $S_{\triangle AEF} = 136$.

Решение. Обозначим $\angle ABC = \psi$, а радиусы Ω и ω через R и r соответственно. Пусть O и Q – центры окружностей Ω и ω соответственно; K – точка пересечения ω и AB, отличная от A.

Отметим, что $\angle BDQ = 90^\circ$ (касательная BD перпендикулярна радиусу DQ) и $\angle BCA = 90^\circ$ (угол вписан в окружность Ω и опирается на её диаметр). Значит, треугольники BDQ и BCA подобны (по двум углам). Отсюда $\frac{BD}{BQ} = \frac{BC}{BA}$, т.е. $\frac{17}{2R-r} = \frac{32}{2R}$, а значит, $R = \frac{16r}{15}$. По теореме о

касательной и секущей $BD^2=BK\cdot BA=(2R-2r)\cdot 2R=\left(\frac{32r}{15}-2r\right)\cdot \frac{32r}{15}=\frac{64r^2}{225}$. Следовательно, $BD=\frac{8r}{15},\ r=\frac{15\cdot BD}{8}=\frac{255}{16},\ R=\frac{16r}{15}=17$.

Далее находим углы и дуги: $\stackrel{\smile}{AC} = 2\angle ABC = 2\psi$; $\angle BQD = 90^\circ - \angle QBD = 90^\circ - \psi$; $\angle AQD = 180^\circ - \angle BQD = 90^\circ + \psi$; $\angle QAD = \frac{1}{2} \left(180^\circ - \angle AQD\right) = 45^\circ - \frac{\psi}{2}$; $\stackrel{\smile}{BE} = 2\angle BAC = 90^\circ - \psi$; $\stackrel{\smile}{CE} = 180^\circ - \stackrel{\smile}{AC} - \stackrel{\smile}{BE} = 90^\circ - \psi$. Следовательно, $\angle AFE = \frac{1}{2} \stackrel{\smile}{AE} = 45^\circ + \frac{\psi}{2}$. Угол ψ известен, так как $\cos \psi = \frac{BC}{BA} = \frac{16}{34} = \frac{8}{17}$. Значит, $\angle AFE = 45^\circ + \frac{1}{2} \arccos \frac{8}{17}$.

Перейдём к нахождению площади. Треугольник AEF прямоугольный ($\angle EAF = 90^\circ$ как вписанный угол, опирающийся на диаметр), поэтому $FA = FE\cos\angle EFA$, $S_{\triangle AEF} = \frac{1}{2}\cdot FA\cdot FE\cdot\sin\angle AFE = \frac{1}{4}FE^2\sin(2\angle AFE) = \frac{1}{4}\cdot 4R^2\sin\left(90^\circ + \psi\right) = R^2\cos\psi = 17^2\cdot\frac{8}{17} = 136$.

5. [5 баллов] Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что $2 \le x \le 25$, $2 \le y \le 25$ и f(x/y) < 0.

Ответ: 206.

Решение. Подставляя a=1 в равенство f(ab)=f(a)+f(b), получаем f(b)=f(1)+f(b), значит, f(1)=0. Если же для произвольных натуральных x,y положить $a=\frac{x}{y},\,b=y$, то получаем $f(x)=f\left(\frac{x}{y}\cdot y\right)=f\left(\frac{x}{y}\right)+f(y)$, откуда $f\left(\frac{x}{y}\right)=f(x)-f(y)$. Таким образом, чтобы вычислить значение функции f в произвольной положительной рациональной точке нам достаточно значения функции f для любого натурального числа.

Для простых чисел и единицы значения функции мы уже знаем. Для составных чисел значения функции могут быть найдены, если их разложить на простые множители и воспользоваться равенством f(ab) = f(a) + f(b), например, $f(15) = f(3 \cdot 5) = f(3) + f(5) = \left[\frac{3}{4}\right] + \left[\frac{5}{4}\right] = 0 + 1 = 1$. Аналогичным образом вычисляем значения функции для $n \in [2; 25]$ и записываем их в таблицу:

n	2	3	4	5	6	7	8	9	10	11	12	13
f(n)	0	0	0	1	0	1	0	0	1	2	0	3
n	14	15	16	17	18	19	20	21	22	23	24	25
f(n)	1	1	0	4	0	4	1	1	2	5	0	2

- x = y. В данном случае имеется 24 варианта.
- $x \neq y$, а f(x) = f(y) = 0. В таблице есть 10 аргументов, при которых f = 0. Выбирая пару таких аргументов, первый можно выбрать 10 способами, а второй 9 способами. Значит, количество пар такого типа равно $10 \cdot 9 = 90$.
- $x \neq y$, а f(x) = f(y) = 1. Аналогично предыдущему пункту получаем $7 \cdot 6 = 42$ пары.
- $x \neq y$, а f(x) = f(y) = 2. Здесь $3 \cdot 2 = 6$ пар.

• $x \neq y$, а f(x) = f(y) = 4. Здесь $2 \cdot 1 = 2$ пары.

Итого, есть 24+90+42+6+2=164 пар натуральных чисел (x;y), для которых $f\left(\frac{x}{y}\right)=0$. Всего имеется $24^2=576$ пар, поэтому тех, при которых $f\left(\frac{x}{y}\right)<0$, ровно $\frac{576-164}{2}=206$.

6. [5 баллов] Найдите все пары чисел (a; b) такие, что неравенство

$$\frac{16x - 16}{4x - 5} \leqslant ax + b \leqslant -32x^2 + 36x - 3$$

выполнено для всех x на промежутке $\left[\frac{1}{4};1\right]$.

Ответ: a = -4, b = 5.

Решение. Рассмотрим второе неравенство. Обозначим $h(x) = -32x^2 + 36x - 3$. График – парабола с ветвями вниз. На концах данного в условии промежутка имеем $h\left(\frac{1}{4}\right) = 4$, h(1) = 1.

Так как неравенство должно выполняться на всём промежутке, то точки $M\left(\frac{1}{4};4\right)$ и N(1;1) могут располагаться на прямой y=ax+b или выше неё. Отсюда самое "высокое" расположение этой прямой (на указанном промежутке) есть прямая MN. Составляя её уравнение по двум точкам, имеем y=-4x+5 (назовём эту прямую ℓ).

График левой части неравенства – гипербола $g(x)=\frac{16x-16}{4x-5}$. Заметим, что она касается прямой ℓ в точке, принадлежащей промежутку $\left[\frac{1}{4};1\right]$. Действительно, уравнение $\frac{16x-16}{4x-5}=-4x+5$ имеет единственное решение $x=\frac{3}{4}$, и при этом $g'(x)=-\frac{16}{(4x-5)^2},$ $g'\left(\frac{3}{4}\right)=-4$, т.е. угловой коэффициент прямой ℓ совпадает с производной функции y=g(x) в их общей точке. Несложно видеть (если построить график), что на данном промежутке прямая ℓ находится выше гиперболы. Любая прямая, расположенная "ниже" прямой ℓ пересекается с гиперболой, и потому не удовлетворяет условию.

Итак, ℓ – единственная возможная прямая, удовлетворяющая условию; следовательно, a=-4, b=5.

7. [6 баллов] Дана пирамида KLMN, вершина N которой лежит на одной сфере с серединами всех её рёбер, кроме ребра KN. Известно, что $KL=3,\ KM=1,\ MN=\sqrt{2}$. Найдите длину ребра LM. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Ответ:
$$LM = 2\sqrt{3}, R_{\min} = \frac{3\sqrt{3}}{2\sqrt{2}}.$$

Решение. Пусть A, B, C, D, E — середины рёбер LN, LM, KM, MN, KL соответственно. Из теоремы о средней линии треугольника следует, что ADCE и ABDN — параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями ACD и LMN, поэтому эти параллелограммы — прямоугольники. Угол LNM — прямой; прямые KN и LM перпендикулярны, так как $KN \parallel AE, AE \perp CE, CE \parallel LM$.

Отметим в плоскости LMN точку K' такую, что $\triangle KLM = \triangle K'LM$, а точки N и K' лежат по разные стороны от прямой LM (треугольник K'LM может быть получен из треугольника KLM поворотом вокруг прямой LM). Из равенства треугольников KLM и K'LM следует, что основания их высот, опущенных на LM – это одна и та же точка (назовём её H). Плоскость HKK' перпендикулярна LM (так как $KH \perp LM$, $K'H \perp LM$), поэтому $KK' \perp LM$. Поскольку $KK' \perp LM$ и $KN \perp LM$, то плоскость KK'N перпендикулярна LM и $K'N \perp LM$.

Значит, K'LNM — четырёхугольник со взаимно перпендикулярными диагоналями (пусть X — точка их пересечения). По теореме Пифагора $K'L^2 = K'X^2 + LX^2$, $LN^2 = LX^2 + NX^2$, $NM^2 = NX^2 + MX^2$, $K'M^2 = K'X^2 + MX^2$, следовательно, $LN^2 + K'M^2 = MN^2 + K'L^2$,

откуда $LN = \sqrt{3^2 + \left(\sqrt{2}\right)^2 - 1^2} = \sqrt{10}$. Из прямоугольного треугольника LMN находим $LM = \sqrt{LN^2 + MN^2} = 2\sqrt{3}$.

Радиус сферы, описанной около пирамиды KLMN, не меньше радиуса R окружности, описанной около грани BCD. Пирамида, для которой достигается равенство, существует. Докажем это. Рассмотрим сферу радиуса R и окружность – её сечение, проходящее через центр сферы. Впишем в эту окружность треугольник KLM и через прямую LM проведём плоскость, перпендикулярную плоскости этого треугольника. В сечении сферы указанной плоскостью получится окружность с диаметром LM, в которую можно вписать прямоугольный треугольник LMN. По теореме косинусов из треугольника KLM находим, что $\cos \angle LKM = \frac{KL^2 + KM^2 - LM^2}{2 \cdot KL \cdot KM} = \frac{9 + 1 - 12}{2 \cdot 3 \cdot 1} = -\frac{1}{3}$, $\sin \angle LKM = \frac{2\sqrt{2}}{3}$. По теореме синусов $R = \frac{LM}{2 \sin \angle LKM} = \frac{2\sqrt{3}}{4\sqrt{2}/3} = \frac{3\sqrt{3}}{2\sqrt{2}}$.

© МФТИ, 2022

1. [3 балла] Углы α и β удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{8}{17}.$$

Найдите все возможные значения $\operatorname{tg} \alpha$, если известно, что он определён и что этих значений не меньше трёх.

Otbet: $0, -4, -\frac{1}{4}$.

Решение. Преобразуя в левой части второго равенства сумму синусов в произведение, получаем $\sin(2\alpha + 2\beta)\cos 2\beta = -\frac{4}{17}$. Подставляем в это соотношение значение синуса из первого равенства:

$$-\frac{1}{\sqrt{17}}\cos 2\beta = -\frac{4}{17} \iff \cos 2\beta = \frac{4}{\sqrt{17}} \iff \begin{vmatrix} \sin 2\beta = \frac{1}{\sqrt{17}}, \\ \sin 2\beta = -\frac{1}{\sqrt{17}}. \end{vmatrix}$$

Отсюда следует, что исходные равенства эквивалентны совокупности двух систем уравнений:

$$\begin{cases} \sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{4}{\sqrt{17}}, \\ \sin 2\beta = \frac{1}{\sqrt{17}} \end{cases}$$
 и
$$\begin{cases} \sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{4}{\sqrt{17}}, \\ \sin 2\beta = -\frac{1}{\sqrt{17}}. \end{cases}$$

Из первой системы получаем

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{4}{\sqrt{17}}, \\ \sin 2\beta = \frac{1}{\sqrt{17}} \end{cases} \Rightarrow \frac{4}{\sqrt{17}} \sin 2\alpha + \frac{1}{\sqrt{17}} \cos 2\alpha = -\frac{1}{\sqrt{17}}.$$

Далее имеем

$$8\sin\alpha\cos\alpha + \left(\cos^2\alpha - \sin^2\alpha\right) = -\left(\cos^2\alpha + \sin^2\alpha\right) \Leftrightarrow 2\cos\alpha(\cos\alpha + 4\sin\alpha) = 0 \Leftrightarrow \begin{cases} \cos\alpha = 0, \\ \cos\alpha = -4\sin\alpha. \end{cases}$$

В первом случае $\operatorname{tg} \alpha$ не существует, а во втором случае $\operatorname{tg} \alpha = -\frac{1}{4}$.

Аналогично рассматриваем вторую систему:

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{4}{\sqrt{17}}, \\ \sin 2\beta = -\frac{1}{\sqrt{17}} \end{cases} \Rightarrow \frac{4}{\sqrt{17}} \sin 2\alpha - \frac{1}{\sqrt{17}} \cos 2\alpha = -\frac{1}{\sqrt{17}} \Leftrightarrow \\ \sin 2\beta = -\frac{1}{\sqrt{17}} \end{cases} \Leftrightarrow 8 \sin \alpha \cos \alpha - \left(\cos^2 \alpha - \sin^2 \alpha\right) = -\left(\cos^2 \alpha + \sin^2 \alpha\right) \Leftrightarrow 2 \sin \alpha (4 \cos \alpha + \sin \alpha) = 0 \Leftrightarrow \\ \Leftrightarrow \left\{ \sin \alpha = 0, \\ 4 \cos \alpha = -\sin \alpha. \right\}$$

Отсюда $\operatorname{tg} \alpha = 0$ или $\operatorname{tg} \alpha = -4$.

Итак, возможные значения $tg \alpha$ – это 0, -4 и $-\frac{1}{4}$.

$$\begin{cases} 3y - 2x = \sqrt{3xy - 2x - 3y + 2}, \\ 3x^2 + 3y^2 - 6x - 4y = 4. \end{cases}$$

Ответ:
$$(2;2), \left(\frac{2-\sqrt{10}}{2}; \frac{4-\sqrt{10}}{6}\right).$$

Решение. Первое уравнение при условии $3y - 2x \ge 0$ равносильно уравнению $(3y - 2x)^2 = 3xy - 2x - 3y + 2$, откуда $4x^2 + (2 - 15y)x + (9y^2 + 3y - 2) = 0$. Решая это уравнение как квадратное относительно переменной x, имеем $D = (2 - 15y)^2 - 16(9y^2 + 3y - 2) = (9y - 6)^2$; x = 3y - 1 или $x = \frac{3}{4}y + \frac{1}{2}$. Подставляем во второе уравнение исходной системы.

Если x=3y-1, то $6y^2-8y+1=0$, и получаем две пары $y=\frac{4+\sqrt{10}}{6},$ $x=\frac{2+\sqrt{10}}{2}$ и $y=\frac{4-\sqrt{10}}{6},$ $x=\frac{2-\sqrt{10}}{2}$.

Если $x^2 = \frac{3}{4}y + \frac{1}{2}$, то $3y^2 - 4y - 4 = 0$, откуда также имеем две пары y = 2, x = 2 и $y = -\frac{2}{3}$, x = 0.

Из четырёх найденных пар чисел неравенству $3y \geqslant 2x$ удовлетворяют только две из них: (2;2), $\left(\frac{2-\sqrt{10}}{2};\frac{4-\sqrt{10}}{6}\right)$.

3. [5 баллов] Решите неравенство

$$3^{\log_4(x^2+6x)} + 6x \geqslant |x^2 + 6x|^{\log_4 5} - x^2.$$

Ответ: $[-8; -6) \cup (0; 2].$

Решение. Заметим, что $x^2 + 6x > 0$. Следовательно, $|x^2 + 6x| = x^2 + 6x$. Область допустимых значений – это $x \in (-\infty; -6) \cup (0; +\infty)$, а неравенство эквивалентно следующим:

$$3^{\log_4(x^2+6x)} + (x^2+6x) \geqslant (x^2+6x)^{\log_4 5} \Leftrightarrow \\ \Leftrightarrow 3^{\log_4(x^2+6x)} + 4^{\log_4(x^2+6x)} \geqslant 5^{\log_4(x^2+6x)} \iff \left(\frac{3}{5}\right)^{\log_4(x^2+6x)} + \left(\frac{4}{5}\right)^{\log_4(x^2+6x)} \geqslant 1.$$

Рассмотрим неравенство $\left(\frac{3}{5}\right)^y + \left(\frac{4}{5}\right)^y \geqslant 1$. Функция $h(y) = \left(\frac{3}{5}\right)^y + \left(\frac{4}{5}\right)^y$ – убывающая (как сумма убывающих функций). Несложно заметить, что h(2) = 1, поэтому если y > 2, то h(y) < 1, а если y < 2, то h(y) > 1. Таким образом, это неравенство даёт $y \leqslant 2$, а исходное неравенство эквивалентно неравенству $\log_4\left(x^2+6x\right) \leqslant 2$. Отсюда получаем $0 < x^2+6x \leqslant 16, x \in [-8;-6) \cup (0;2]$.

4. [5 баллов] Окружности Ω и ω касаются в точке A внутренним образом. Отрезок AB – диаметр большей окружности Ω , а хорда BC окружности Ω касается ω в точке D. Луч AD повторно пересекает Ω в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает Ω в точке F. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что $CD = \frac{5}{2}$, $BD = \frac{13}{2}$.

Otbet:
$$R = \frac{39}{8}, \ r = \frac{65}{24}, \ \angle AFE = 45^{\circ} + \frac{1}{2}\arccos\frac{12}{13}, \ S_{\triangle AEF} = \frac{351}{16}.$$

Решение. Обозначим $\angle ABC = \psi$, а радиусы Ω и ω через R и r соответственно. Пусть O и Q – центры окружностей Ω и ω соответственно; K – точка пересечения ω и AB, отличная от A.

Отметим, что $\angle BDQ = 90^\circ$ (касательная BD перпендикулярна радиусу DQ) и $\angle BCA = 90^\circ$ (угол вписан в окружность Ω и опирается на её диаметр). Значит, треугольники BDQ и BCA подобны (по двум углам). Отсюда $\frac{BD}{BQ} = \frac{BC}{BA}$, т.е. $\frac{13}{2R-r} = \frac{18}{2R}$, а значит, $R = \frac{9r}{5}$. По теореме о касательной и секущей $BD^2 = BK \cdot BA = (2R-2r) \cdot 2R = \left(\frac{18r}{5} - 2r\right) \cdot \frac{18r}{5} = \frac{144r^2}{25}$. Следовательно, $BD = \frac{12r}{5}$, $r = \frac{5 \cdot BD}{12} = \frac{65}{24}$, $R = \frac{9r}{5} = \frac{39}{8}$.

Далее находим углы и дуги: $\stackrel{\smile}{AC} = 2\angle ABC = 2\psi$; $\angle BQD = 90^\circ - \angle QBD = 90^\circ - \psi$; $\angle AQD = 180^\circ - \angle BQD = 90^\circ + \psi$; $\angle QAD = \frac{1}{2}\left(180^\circ - \angle AQD\right) = 45^\circ - \frac{\psi}{2}$; $\stackrel{\smile}{BE} = 2\angle BAC = 90^\circ - \psi$; $\stackrel{\smile}{CE} = 180^\circ - \stackrel{\smile}{AC} - \stackrel{\smile}{BE} = 90^\circ - \psi$. Следовательно, $\angle AFE = \frac{1}{2}\stackrel{\smile}{AE} = 45^\circ + \frac{\psi}{2}$. Угол ψ известен, так как $\cos\psi = \frac{BC}{BA} = \frac{9}{39/4} \cdot \frac{12}{13}$. Значит, $\angle AFE = 45^\circ + \frac{1}{2}\arccos\frac{12}{13}$.

Перейдём к нахождению площади. Треугольник AEF прямоугольный ($\angle EAF = 90^\circ$ как вписанный угол, опирающийся на диаметр), поэтому $FA = FE \cos \angle EFA$, $S_{\triangle AEF} = \frac{1}{2} \cdot FA \cdot FE \cdot \sin \angle AFE = \frac{1}{4}FE^2 \sin(2\angle AFE) = \frac{1}{4} \cdot 4R^2 \sin(90^\circ + \psi) = R^2 \cos \psi = \left(\frac{39}{8}\right)^2 \cdot \frac{12}{13} = \frac{351}{16}$.

5. [5 баллов] Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что $3 \le x \le 27$, $3 \le y \le 27$ и f(x/y) < 0.

Ответ: 229.

Решение. Подставляя a=1 в равенство f(ab)=f(a)+f(b), получаем f(b)=f(1)+f(b), значит, f(1)=0. Если же для произвольных натуральных x,y положить $a=\frac{x}{y},\,b=y$, то получаем $f(x)=f\left(\frac{x}{y}\cdot y\right)=f\left(\frac{x}{y}\right)+f(y)$, откуда $f\left(\frac{x}{y}\right)=f(x)-f(y)$. Таким образом, чтобы вычислить значение функции f в произвольной положительной рациональной точке нам достаточно значения функции f для любого натурального числа.

Для простых чисел и единицы значения функции мы уже знаем. Для составных чисел значения функции могут быть найдены, если их разложить на простые множители и воспользоваться равенством f(ab) = f(a) + f(b), например, $f(15) = f(3 \cdot 5) = f(3) + f(5) = \left[\frac{3}{4}\right] + \left[\frac{5}{4}\right] = 0 + 1 = 1$. Аналогичным образом вычисляем значения функции для $n \in [3; 27]$ и записываем их в таблицу:

n	3	4	5	6	7	8	9	10	11	12	13	14	15
f(n)	0	0	1	0	1	0	0	1	2	0	3	1	1
n	16	17	18	19	20	21	22	23	24	25	26	27	
f(n)	0	4	0	4	1	1	2	5	0	2	3	0	

- x = y. В данном случае имеется 25 вариантов.
- $x \neq y$, а f(x) = f(y) = 0. В таблице есть 10 аргументов, при которых f = 0. Выбирая пару таких аргументов, первый можно выбрать 10 способами, а второй 9 способами. Значит, количество пар такого типа равно $10 \cdot 9 = 90$.
- $x \neq y$, а f(x) = f(y) = 1. Аналогично предыдущему пункту получаем $7 \cdot 6 = 42$ пары.
- $x \neq y$, а f(x) = f(y) = 2. Здесь $3 \cdot 2 = 6$ пар.
- $x \neq y$, а f(x) = f(y) = 3. Здесь $2 \cdot 1 = 2$ пары.
- $x \neq y$, а f(x) = f(y) = 4. Здесь также $2 \cdot 1 = 2$ пары.

Итого, есть 25 + 90 + 42 + 6 + 2 + 2 = 167 пар натуральных чисел (x; y), для которых $f\left(\frac{x}{y}\right) = 0$. Всего имеется $25^2 = 625$ пар, поэтому тех, при которых $f\left(\frac{x}{y}\right) < 0$, ровно $\frac{625-167}{2} = 229$.

6. [5 баллов] Найдите все пары чисел (a; b) такие, что неравенство

$$\frac{4x-3}{2x-2} \geqslant ax+b \geqslant 8x^2 - 34x + 30$$

выполнено для всех x на промежутке (1;3].

Ответ: a = -2, b = 6.

Решение. Рассмотрим второе неравенство. Обозначим $h(x) = 8x^2 - 34x + 30$. График – парабола с ветвями вверх. На концах данного в условии промежутка имеем h(1) = 4, h(3) = 0. Так как неравенство должно выполняться на всём промежутке, то точки M(1;4) и N(3;0) могут располагаться на прямой y = ax + b или ниже неё. Отсюда самое "низкое" расположение этой прямой (на указанном промежутке) есть прямая MN. Составляя её уравнение по двум точкам, имеем y = -2x + 6 (назовём эту прямую ℓ).

График левой части неравенства – гипербола $g(x) = \frac{4x-3}{2x-2}$. Заметим, что она касается прямой ℓ в точке, принадлежащей промежутку (1;3]. Действительно, уравнение $\frac{4x-3}{2x-2} = -2x+6$ имеет единственное решение $x=\frac{3}{2}$, и при этом $g'(x)=-\frac{2}{(2x-2)^2},$ $g'\left(\frac{3}{2}\right)=-2$, т.е. угловой коэффициент прямой ℓ совпадает с производной функции y=g(x) в их общей точке. Несложно видеть (если построить график), что на данном промежутке прямая ℓ находится ниже гиперболы. Любая прямая, расположенная "выше" прямой ℓ пересекается с гиперболой, и потому не удовлетворяет условию.

Итак, ℓ – единственная возможная прямая, удовлетворяющая условию; следовательно, a=-2, b=6.

7. [6 баллов] Дана пирамида PQRS, вершина P которой лежит на одной сфере с серединами всех её рёбер, кроме ребра PQ. Известно, что $QR=2, \, QS=1, \, PS=\sqrt{2}$. Найдите длину ребра RS. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Ответ:
$$RS = \sqrt{7}, R_{\min} = \sqrt{\frac{7}{3}}.$$

Решение. Пусть A, B, C, D, E — середины рёбер PR, RS, QS, PS, QR соответственно. Из теоремы о средней линии треугольника следует, что ADCE и ABDP — параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями ACD и PRS, поэтому эти параллелограммы — прямоугольники. Угол RPS — прямой; прямые PQ и RS перпендикулярны, так как $PQ \parallel AE, AE \perp CE, CE \parallel RS$.

Отметим в плоскости PRS точку Q' такую, что $\triangle QRS = \triangle Q'RS$, а точки P и Q' лежат по разные стороны от прямой RS (треугольник Q'RS может быть получен из треугольника QRS поворотом вокруг прямой RS). Из равенства треугольников QRS и Q'RS следует, что основания их высот, опущенных на RS – это одна и та же точка (назовём её H). Плоскость HQQ' перпендикулярна RS (так как $QH \perp RS$, $Q'H \perp RS$), поэтому $QQ' \perp RS$. Поскольку $QQ' \perp RS$ и $PQ \perp RS$, то плоскость PQQ' перпендикулярна RS и $PQ' \perp RS$.

Значит, PRQ'S — четырёхугольник со взаимно перпендикулярными диагоналями (пусть X — точка их пересечения). По теореме Пифагора $PR^2 = PX^2 + RX^2$, $Q'R^2 = Q'X^2 + RX^2$, $Q'S^2 = Q'X^2 + SX^2$, $PS^2 = PX^2 + SX^2$, следовательно, $PS^2 + Q'R^2 = PR^2 + Q'S^2$, откуда $PR = \sqrt{2^2 + \left(\sqrt{2}\right)^2 - 1^2} = \sqrt{5}$. Из прямоугольного треугольника PRS находим $RS = \sqrt{PR^2 + PS^2} = \sqrt{7}$.

Радиус сферы, описанной около пирамиды PQRS, не меньше радиуса r окружности, описанной около грани QRS. Пирамида, для которой достигается равенство, существует. Докажем это. Рассмотрим сферу радиуса r и окружность — её сечение, проходящее через центр сферы. Впишем в эту окружность треугольник QRS и через прямую LM проведём плоскость, перпендикулярную плоскости этого треугольника. В сечении сферы указанной плоскостью получится окружность с диаметром RS, в которую можно вписать прямоугольный треугольник PRS. По теореме косинусов из треугольника PRS находим, что $\cos \angle RQS = \frac{QR^2 + QS^2 - RS^2}{2 \cdot QR \cdot QS} = \frac{4+1-7}{2 \cdot 2 \cdot 1} = -\frac{1}{2}$, $\angle RQS = 120^\circ$. По теореме синусов $r = \frac{RS}{2 \sin \angle RQS} = \frac{\sqrt{7}}{\sqrt{3}}$.

© МФТИ, 2022

1. [3 балла] Углы α и β удовлетворяют равенствам

$$\sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}; \quad \sin(2\alpha + 4\beta) + \sin 2\alpha = -\frac{2}{17}.$$

Найдите все возможные значения $\operatorname{tg} \alpha$, если известно, что он определён и что этих значений не меньше трёх.

Ответ: $\frac{5}{3}$, -1, $\frac{3}{5}$.

Решение. Преобразуя в левой части второго равенства сумму синусов в произведение, получаем $\sin(2\alpha + 2\beta)\cos 2\beta = -\frac{1}{17}$. Подставляем в это соотношение значение синуса из первого равенства:

$$-\frac{1}{\sqrt{17}}\cos 2\beta = -\frac{1}{17} \iff \cos 2\beta = \frac{1}{\sqrt{17}} \iff \begin{bmatrix} \sin 2\beta = \frac{4}{\sqrt{17}}, \\ \sin 2\beta = -\frac{4}{\sqrt{17}}. \end{bmatrix}$$

Отсюда следует, что исходные равенства эквивалентны совокупности двух систем уравнений:

$$\begin{cases} \sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{1}{\sqrt{17}}, \\ \sin 2\beta = -\frac{4}{\sqrt{17}} \end{cases}$$
 и
$$\begin{cases} \sin(2\alpha + 2\beta) = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{1}{\sqrt{17}}, \\ \sin 2\beta = \frac{4}{\sqrt{17}}. \end{cases}$$

Из первой системы получаем

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{1}{\sqrt{17}}, \\ \sin 2\beta = -\frac{4}{\sqrt{17}} \end{cases} \Rightarrow \frac{1}{\sqrt{17}} \sin 2\alpha - \frac{4}{\sqrt{17}} \cos 2\alpha = -\frac{1}{\sqrt{17}}.$$

Далее имеем

$$2\sin\alpha\cos\alpha - 4\left(\cos^2\alpha - \sin^2\alpha\right) = -\left(\cos^2\alpha + \sin^2\alpha\right) \Leftrightarrow 5\sin^2\alpha + 2\sin\alpha\cos\alpha - 3\cos^2\alpha = 0 \Leftrightarrow \begin{cases} 5\sin\alpha - 3\cos\alpha = 0, \\ \sin\alpha + \cos\alpha = 0. \end{cases}$$

В первом случае tg $\alpha = \frac{3}{5}$, а во втором случае tg $\alpha = -1$.

Аналогично рассматриваем вторую систему:

$$\begin{cases} \sin 2\alpha \cos 2\beta + \cos 2\alpha \sin 2\beta = -\frac{1}{\sqrt{17}}, \\ \cos 2\beta = \frac{1}{\sqrt{17}}, \\ \sin 2\beta = \frac{4}{\sqrt{17}} \end{cases} \Rightarrow \frac{1}{\sqrt{17}} \sin 2\alpha + \frac{4}{\sqrt{17}} \cos 2\alpha = -\frac{1}{\sqrt{17}} \Leftrightarrow \\ \Leftrightarrow 2 \sin \alpha \cos \alpha + 4 \left(\cos^2 \alpha - \sin^2 \alpha\right) = -\left(\cos^2 \alpha + \sin^2 \alpha\right) \Leftrightarrow 3 \sin^2 \alpha - 2 \sin \alpha \cos \alpha - 5 \cos^2 \alpha = 0 \Leftrightarrow \\ \Leftrightarrow \left[3 \sin \alpha - 5 \cos \alpha = 0, \\ \sin \alpha + \cos \alpha = 0. \right] \end{cases}$$

Отсюда $\operatorname{tg} \alpha = \frac{5}{3}$ или $\operatorname{tg} \alpha = -1$.

Итак, возможные значения $\operatorname{tg} \alpha$ – это $\frac{5}{3}$, -1 и $\frac{3}{5}$.

$$\begin{cases} y - 6x = \sqrt{xy - 6x - y + 6}, \\ 9x^2 + y^2 - 18x - 12y = 45. \end{cases}$$

Ответ:
$$(2;15)$$
, $\left(1-3\sqrt{\frac{2}{5}};6-12\sqrt{\frac{2}{5}}\right)$.

Решение. Первое уравнение при условии $y-6x\geqslant 0$ равносильно уравнению $(y-6x)^2=xy-6x-y+6$, откуда $y^2+(1-13x)y+(36x^2+6x-6)=0$. Решая это уравнение как квадратное относительно переменной y, имеем $D=(1-13x)^2-4\,(36x^2+6x-6)=(5x-5)^2;\,y=9x-3$ или y=4x+2. Подставляем во второе уравнение исходной системы.

Если y=9x-3, то $90x^2-180x=0$, и получаем две пары x=0, y=-3 и x=2, y=15. Если y=4x+2, то $5x^2-10x-13=0$, откуда также имеем две пары $x=1+3\sqrt{\frac{2}{5}},$ $y=6+12\sqrt{\frac{2}{5}}$ и $x=1-3\sqrt{\frac{2}{5}},$ $y=6-12\sqrt{\frac{2}{5}}$.

Из четырёх найденных пар чисел неравенству $y \geqslant 6x$ удовлетворяют только две из них: (2;15), $\left(1-3\sqrt{\frac{2}{5}};6-12\sqrt{\frac{2}{5}}\right)$.

3. [5 баллов] Решите неравенство

$$|x^2 - 26x|^{\log_5 12} + 26x \geqslant x^2 + 13^{\log_5(26x - x^2)}$$
.

Ответ: $(0;1] \cup [25;26)$.

Решение. Заметим, что $26x-x^2 > 0$. Следовательно, $|x^2 - 26x| = 26x-x^2$. Область допустимых значений – это $x \in (0; 26)$, а неравенство эквивалентно следующим:

$$12^{\log_5(26x-x^2)} + (26x - x^2) \geqslant (26x - x^2)^{\log_5 13} \Leftrightarrow \\ \Leftrightarrow 12^{\log_5(26x-x^2)} + 5^{\log_5(26x-x^2)} \geqslant 13^{\log_5(26x-x^2)} \Leftrightarrow \left(\frac{12}{13}\right)^{\log_5(26x-x^2)} + \left(\frac{5}{13}\right)^{\log_5(26x-x^2)} \geqslant 1.$$

Рассмотрим неравенство $\left(\frac{12}{13}\right)^y + \left(\frac{5}{13}\right)^y \geqslant 1$. Функция $h(y) = \left(\frac{12}{13}\right)^y + \left(\frac{5}{13}\right)^y$ — убывающая (как сумма убывающих функций). Несложно заметить, что h(2) = 1, поэтому если y > 2, то h(y) < 1, а если y < 2, то h(y) > 1. Таким образом, это неравенство даёт $y \leqslant 2$, а исходное неравенство эквивалентно неравенству $\log_5\left(26x - x^2\right) \leqslant 2$. Отсюда получаем $0 < 26x - x^2 \leqslant 25$, $x \in (0;1] \cup [25;26)$.

4. [5 баллов] Окружности Ω и ω касаются в точке A внутренним образом. Отрезок AB – диаметр большей окружности Ω , а хорда BC окружности Ω касается ω в точке D. Луч AD повторно пересекает Ω в точке E. Прямая, проходящая через точку E перпендикулярно BC, повторно пересекает Ω в точке F. Найдите радиусы окружностей, угол AFE и площадь треугольника AEF, если известно, что CD=12, BD=13.

Ответ:
$$R = \frac{65}{2}, \ r = \frac{156}{5}, \ \angle AFE = 45^{\circ} + \frac{1}{2}\arccos\frac{5}{13}, \ S_{\triangle AEF} = \frac{1625}{4}.$$

Решение. Обозначим $\angle ABC = \psi$, а радиусы Ω и ω через R и r соответственно. Пусть O и Q – центры окружностей Ω и ω соответственно; K – точка пересечения ω и AB, отличная от A.

Отметим, что $\angle BDQ = 90^\circ$ (касательная BD перпендикулярна радиусу DQ) и $\angle BCA = 90^\circ$ (угол вписан в окружность Ω и опирается на её диаметр). Значит, треугольники BDQ и BCA подобны (по двум углам). Отсюда $\frac{BD}{BQ} = \frac{BC}{BA}$, т.е. $\frac{13}{2R-r} = \frac{25}{2R}$, а значит, $R = \frac{25r}{24}$. По теореме о

касательной и секущей $BD^2=BK\cdot BA=(2R-2r)\cdot 2R=\left(\frac{25r}{12}-2r\right)\cdot \frac{25r}{12}=\frac{25r^2}{144}$. Следовательно, $BD=\frac{5r}{12},\ r=\frac{12\cdot BD}{5}=\frac{156}{5},\ R=\frac{25r}{24}=\frac{65}{2}$.

Далее находим углы и дуги: $\stackrel{\smile}{AC} = 2\angle ABC = 2\psi$; $\angle BQD = 90^\circ - \angle QBD = 90^\circ - \psi$; $\angle AQD = 180^\circ - \angle BQD = 90^\circ + \psi$; $\angle QAD = \frac{1}{2} \left(180^\circ - \angle AQD\right) = 45^\circ - \frac{\psi}{2}$; $\stackrel{\smile}{BE} = 2\angle BAC = 90^\circ - \psi$; $\stackrel{\smile}{CE} = 180^\circ - \stackrel{\smile}{AC} - \stackrel{\smile}{BE} = 90^\circ - \psi$. Следовательно, $\angle AFE = \frac{1}{2} \stackrel{\smile}{AE} = 45^\circ + \frac{\psi}{2}$. Угол ψ известен, так как $\cos \psi = \frac{BC}{BA} = \frac{25}{65} \cdot \frac{5}{13}$. Значит, $\angle AFE = 45^\circ + \frac{1}{2} \arccos \frac{5}{13}$.

Перейдём к нахождению площади. Треугольник AEF прямоугольный ($\angle EAF = 90^\circ$ как вписанный угол, опирающийся на диаметр), поэтому $FA = FE \cos \angle EFA$, $S_{\triangle AEF} = \frac{1}{2} \cdot FA \cdot FE \cdot \sin \angle AFE = \frac{1}{4}FE^2 \sin(2\angle AFE) = \frac{1}{4} \cdot 4R^2 \sin(90^\circ + \psi) = R^2 \cos \psi = \left(\frac{65}{2}\right)^2 \cdot \frac{5}{13} = \frac{1625}{4}$.

5. [5 баллов] Функция f определена на множестве положительных рациональных чисел. Известно, что для любых чисел a и b из этого множества выполнено равенство f(ab) = f(a) + f(b), и при этом f(p) = [p/4] для любого простого числа p ([x] обозначает наибольшее целое число, не превосходящее x). Найдите количество пар натуральных чисел (x;y) таких, что $4 \le x \le 28$, $4 \le y \le 28$ и f(x/y) < 0.

Ответ: 231.

Решение. Подставляя a=1 в равенство f(ab)=f(a)+f(b), получаем f(b)=f(1)+f(b), значит, f(1)=0. Если же для произвольных натуральных x,y положить $a=\frac{x}{y},b=y$, то получаем $f(x)=f\left(\frac{x}{y}\cdot y\right)=f\left(\frac{x}{y}\right)+f(y)$, откуда $f\left(\frac{x}{y}\right)=f(x)-f(y)$. Таким образом, чтобы вычислить значение функции f в произвольной положительной рациональной точке нам достаточно значения функции f для любого натурального числа.

Для простых чисел и единицы значения функции мы уже знаем. Для составных чисел значения функции могут быть найдены, если их разложить на простые множители и воспользоваться равенством f(ab) = f(a) + f(b), например, $f(15) = f(3 \cdot 5) = f(3) + f(5) = \left[\frac{3}{4}\right] + \left[\frac{5}{4}\right] = 0 + 1 = 1$. Аналогичным образом вычисляем значения функции для $n \in [4; 28]$ и записываем их в таблицу:

n	4	5	6	7	8	9	10	11	12	13	14	15	16
f(n)	0	1	0	1	0	0	1	2	0	3	1	1	0
n	17	18	19	20	21	22	23	24	25	26	27	28	
f(n)	4	0	4	1	1	2	5	0	2	3	0	1	

- x = y. В данном случае имеется 25 вариантов.
- $x \neq y$, а f(x) = f(y) = 0. В таблице есть 9 аргументов, при которых f = 0. Выбирая пару таких аргументов, первый можно выбрать 9 способами, а второй 8 способами. Значит, количество пар такого типа равно $9 \cdot 8 = 72$.
- $x \neq y$, а f(x) = f(y) = 1. Аналогично предыдущему пункту получаем $8 \cdot 7 = 56$ пар.
- $x \neq y$, а f(x) = f(y) = 2. Здесь $3 \cdot 2 = 6$ пар.

- $x \neq y$, а f(x) = f(y) = 3. Здесь $2 \cdot 1 = 2$ пары.
- $x \neq y$, а f(x) = f(y) = 4. Здесь также $2 \cdot 1 = 2$ пары.

Итого, есть 25 + 72 + 56 + 6 + 2 + 2 = 163 парѕ натуральных чисел (x; y), для которых $f\left(\frac{x}{y}\right) = 0$. Всего имеется $25^2 = 625$ пар, поэтому тех, при которых $f\left(\frac{x}{y}\right) < 0$, ровно $\frac{625 - 163}{2} = 231$.

6. [5 баллов] Найдите все пары чисел (a;b) такие, что неравенство

$$\frac{8 - 6x}{3x - 2} \geqslant ax + b \geqslant 18x^2 - 51x + 28$$

выполнено для всех x на промежутке $(\frac{2}{3}; 2]$.

Ответ: a = -3, b = 4.

Решение. Рассмотрим второе неравенство. Обозначим $h(x) = 18x^2 - 51x + 28$. График – парабола с ветвями вверх. На концах данного в условии промежутка имеем $h\left(\frac{2}{3}\right) = 2$, h(2) = -2.

Так как неравенство должно выполняться на всём промежутке, то точки $M\left(\frac{2}{3};2\right)$ и N(2;-2) могут располагаться на прямой y=ax+b или ниже неё. Отсюда самое "низкое" расположение этой прямой (на указанном промежутке) есть прямая MN. Составляя её уравнение по двум точкам, имеем y=-3x+4 (назовём эту прямую ℓ).

График левой части неравенства – гипербола $g(x) = \frac{8-6x}{3x-2}$. Заметим, что она касается прямой ℓ в точке, принадлежащей промежутку $\left(\frac{2}{3};2\right]$. Действительно, уравнение $\frac{8-6x}{3x-2} = -3x+4$ имеет единственное решение $x=\frac{4}{3}$, и при этом $g'(x)=-\frac{12}{(3x-2)^2},$ $g'\left(\frac{4}{3}\right)=-3$, т.е. угловой коэффициент прямой ℓ совпадает с производной функции y=g(x) в их общей точке. Несложно видеть (если построить график), что на данном промежутке прямая ℓ находится ниже гиперболы. Любая прямая, расположенная "выше" прямой ℓ пересекается с гиперболой, и потому не удовлетворяет условию.

Итак, ℓ – единственная возможная прямая, удовлетворяющая условию; следовательно, a=-3, b=4.

7. [6 баллов] Дана пирамида TXYZ, вершина Y которой лежит на одной сфере с серединами всех её рёбер, кроме ребра TY. Известно, что $XY = \sqrt{3}$, $TX = \sqrt{2}$, TZ = 2. Найдите длину ребра XZ. Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Ответ: $XZ = 2\sqrt{2}, R_{\min} = \frac{4}{\sqrt{7}}.$

Решение. Пусть A, B, C, D, E — середины рёбер XY, XZ, TZ, YZ, TX соответственно. Из теоремы о средней линии треугольника следует, что ADCE и ABDY — параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями ACD и XYZ, поэтому эти параллелограммы — прямоугольники. Угол XYZ — прямой; прямые TY и XZ перпендикулярны, так как $TY \parallel AE, AE \perp CE, CE \parallel XZ$.

Отметим в плоскости XYZ точку T' такую, что $\triangle TXZ = \triangle T'XZ$, а точки Y и T' лежат по разные стороны от прямой XZ (треугольник T'XZ может быть получен из треугольника TXZ поворотом вокруг прямой XZ). Из равенства треугольников TXZ и T'XZ следует, что основания их высот, опущенных на XZ – это одна и та же точка (назовём её H). Плоскость HTT' перпендикулярна XZ (так как $TH \perp XZ$, $T'H \perp XZ$), поэтому $TT' \perp XZ$. Поскольку $TT' \perp XZ$ и $TY \perp XZ$, то плоскость TT'Y перпендикулярна XZ и $TY \perp XZ$.

Значит, T'XYZ — четырёхугольник со взаимно перпендикулярными диагоналями (пусть P — точка их пересечения). По теореме Пифагора $T'X^2 = T'P^2 + XP^2$, $XY^2 = XP^2 + YP^2$,

$$YZ^2=YP^2+ZP^2,\ T'Z^2=T'P^2+ZP^2,$$
 следовательно, $YZ^2+T'X^2=XY^2+T'Z^2,$ откуда $YZ=\sqrt{2^2+\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}=\sqrt{5}.$ Из прямоугольного треугольника XYZ находим $XZ=\sqrt{XY^2+YZ^2}=2\sqrt{2}.$

Радиус сферы, описанной около пирамиды TXYZ, не меньше радиуса R окружности, описанной около грани TXZ. Пирамида, для которой достигается равенство, существует. Докажем это. Рассмотрим сферу радиуса R и окружность – её сечение, проходящее через центр сферы. Впишем в эту окружность треугольник TXZ и через прямую XZ проведём плоскость, перпендикулярную плоскости этого треугольника. В сечении сферы указанной плоскостью получится окружность с диаметром XZ, в которую можно вписать прямоугольный треугольник XYZ. По теореме косинусов из треугольника TXZ находим, что $\cos \angle XTZ = \frac{TX^2 + TZ^2 - XZ^2}{2 \cdot TZ \cdot TX} = \frac{2+4-8}{2 \cdot 2 \cdot \sqrt{2}} = -\frac{1}{2\sqrt{2}}$, $\sin \angle XTZ = \frac{\sqrt{7}}{2\sqrt{2}}$. По теореме синусов $R = \frac{XZ}{2\sin \angle XTZ} = \frac{2\sqrt{2}}{7/\sqrt{2}} = \frac{4}{\sqrt{7}}$.